

Non-Traditional Technologies for Nutrient Management

Amanda Ruggiero, PE
Town of Barnstable
Assistant Town Engineer

208 Plan Solution Categories

- Enhances habitat, wildlife and Improves energy savings, biodiversity
- Promotes green space, conservation and recreation
- nutrient recovery and recycling
- Improves management of flooding

Toilets: Urine Diverting & Composting

Reduction

Treatment before disposal to ground

Composting Toilet

 Diverts human waste into a separate holding tank for composting

Urine Diverting Toilet

 Diverts urine into a separate holding tank for fertilizer processing

Toilets: Urine Diverting & Composting

Reduction

Treatment before disposal to ground

Constructed Wetland

- Primary treated
 wastewater is slowly
 filtered under 3-8
 inches of plant root
 zones and soil media.
- Reclaimed water is discharged into the groundwater

Constructed Wetland

- Site restrictions such as greater than half acre required; outsides all 100 years flood zone and other sensitive areas; greater than 4 feet depth to ground water
- May require carbon source initially
- May become clogged and reduces phosphorus removal over time
- May attract water fowl
- May need to be lined

Permeable Reactive Barrier- Trench

- A barrier consisting of coarse sand, wood chips and compost is installed in the aquifer to intercept nitrogen enriched groundwater
- Microbes consume the carbon source to develop an anaerobic environment releasing nitrogen

Permeable Reactive Barrier- Trench

- Site restrictions including requiring a minimum of 20 feet of saturated aquifer
- May require buffering agent to maintain pH
- Requires upstream and downstream groundwater monitoring
- Requires a detail hydrogeological investigation and groundwater modeling to estimate effectiveness

Fertigation

Installing wells to pump off
 nitrogen enriched
 groundwater

 Utilizing the water to irrigate and fertilize turf grass (golf courses, athletic fields and lawns), and crops (cranberry bogs).

Fertigation

Treatment in groundwater

- Seasonal technology
- Location is specific to 'plumes' (i.e. downstream of WPCF)
- Requires monitoring

Aquaculture Mariculture

- Planting seaweed and other marine vegetation
- Seaweed will consume the nitrogen load
- Seaweed will need to cultivated in order to remove the nitrogen from the estuary; can be harvested for market

Aquaculture Mariculture

- Growing conditions, aesthetics or navigation may be limited
- Susceptible to disease
- Requires operation and maintenance for the removal of the vegetation

Shellfish Farming

Encouraging a positive environment for maturing oysters
Growing and removal of mature oysters can remove nitrogen from an estuary

Shellfish Farming

- Growing conditions, aesthetics or navigation may be limited
- Susceptible to disease or population crash
- Requires operation and maintenance for the removal of the oysters
- Large concentrations can generate water products, reduced dissolved oxygen levels and generate ammonia
- Require large, saline areas

Coastal Habitat Restoration

 Establishing and/or enhancing estuary salt marshes, eel grass beds will naturally remove nitrogen if they are being optimized

Coastal Habitat Restoration

Challenges & Risks

 Reduction in efficiency due to exposure to saline waters

Constructed Wetlands- Floating

Manmade floating
 islands made of
 recycled materials that
 reduce nitrogen and
 phosphorus by
 creating an
 environment in plant's
 roots for fish and
 microorganisms.

Figure 4-22 FIGURE NOT TO SCALE

Constructed Wetlands- Floating

Challenges & Risks

Damage to structure during storm events

Pond and Estuary Dredging

 Utilizing mechanical means to physically remove sediments from the pond or estuary. These sediments contain nutrients that could release into the water column.

Pond and Estuary Dredging

- Permitting requirements may be extensive
- Disrupting to biological communities
- Disposal costs of sediments may be costly

Questions?

