WHAT CONTAMINANTS MAY BE PRESENT IN OUR WATER?

The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Microbial Contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

Pesticides and Herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses.

Inorganic Contaminants, such as salts and metals, that can come from industrial and urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming.

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, that may come from industrial and urban stormwater runoff, septic systems, and agricultural livestock operations.

Radioactive Contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, the DEP and EPA prescribe regulations that limit the amount of certain contaminants in public water systems.

WHAT IS SWAP?

Source Water Assessment and Protection (SWAP) What Is SWAP?
The Source Water Assessment Protection (SWAP) program assesses the susceptibility of public water supplies to potential contamination by microbiological pathogens and chemicals.

What Is My System’s Ranking?

A susceptibility ranking of high, was assigned to this system using the information collected during the assessment by the DEP. A source’s susceptibility to contamination does not imply poor water quality. Soil conditions contributed to this ranking.

Actual water quality is best reflected by the results of regular water tests. To learn more about your water quality, refer to this report.

Common Potential Sources of Contamination Include:

– septic systems, household hazardous materials, heating oil storage, stormwater, leachates, pesticides and automotive fluids.

Where Can I See The SWAP Report?
The complete SWAP report is available at the Water Department Office and Board of Health. For more information, call Superintendent Craig Crocker 508-428-6691.

Residents Can Help Protect Sources By:

– practicing good septic system maintenance,
– supporting water supply protection initiatives at the next town/district meetings,
– taking hazardous household chemicals to hazardous materials collection days, and
– limiting pesticide and fertilizer use, etc.

Facts About Your Water Delivery System

⇒ Over 252 miles of water mains
⇒ 12,209 billed accounts and 38,000 customers
⇒ Provides fire protection through 2005 hydrants
⇒ Can store 6.8 million gallons of water in 3 storage tanks
⇒ Includes 19 pumping stations, 13 treatment facilities
⇒ 662 Acres of watershed protection
⇒ Discoloration caused by iron is controlled with a sequestering agent (poly phosphate) at 4 wells
⇒ The pH of water on Cape Cod tends to be acidic in the range of 5.0 to 6.5 (pH is the measure of acidity or alkalinity of a liquid). On the pH scale, the number 7 is neutral, less than 7 is acidic, and more than 7 is alkaline (basic). Due to the lower pH of our water, we add a harmless alkaline substance (pompropsic hydroxide) to our water in order to reduce corrosion in the distribution system and in your home or business.

In 2019 the COMM Water Department delivered over one billion gallons of water.
The table lists all the substances in drinking water that we detected during calendar year 2019 (unless otherwise noted), although the presence of these substances in the water does not necessarily indicate that the water poses a health risk, it is important that you know exactly what and how much was detected. The Fourth Unregulated Contaminant Monitoring Rule (UCMR4) results are below for 2019 with new range on Manganese (ppb).

<table>
<thead>
<tr>
<th>Unregulated</th>
<th>MCLG</th>
<th>MCL</th>
<th>Highest Level Detected</th>
<th>Range of Detection</th>
<th>Violation</th>
<th>Major Source in Drinking Water</th>
<th>Health Effects/Language</th>
<th>Possible Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Perchlorate</td>
<td>N/A</td>
<td>2 ppb</td>
<td>0</td>
<td>N/A</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>

Secondary Contaminants

<table>
<thead>
<tr>
<th>Unregulated</th>
<th>MCLG</th>
<th>MCL</th>
<th>Highest Level Detected</th>
<th>Range of Detection</th>
<th>Violation</th>
<th>Major Source in Drinking Water</th>
<th>Health Effects/Language</th>
<th>Possible Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manganese</td>
<td>50</td>
<td>30</td>
<td>38</td>
<td>3 - 76</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Iron</td>
<td>250</td>
<td>5</td>
<td>40</td>
<td>0 - 41</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Arsenic</td>
<td>250</td>
<td>5</td>
<td>3</td>
<td>1.3 - 9.3</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Disinfectant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>

Unregulated Contaminants

Unregulated contaminants are those for which the EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assess EPA’s determination of occurrence in drinking water and whether future regulation is warranted. UCMR data summary at: water.epa.gov

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible by using the best available treatment technology. MCLs are expressed as ppb or ppb equivalent.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or anticipated risk to human health. MCLGs do not allow for margin of safety. MCLGs are non-enforceable standards.

Lead

<table>
<thead>
<tr>
<th>Unregulated</th>
<th>MCLG</th>
<th>MCL</th>
<th>Highest Level Detected</th>
<th>Range of Detection</th>
<th>Violation</th>
<th>Major Source in Drinking Water</th>
<th>Health Effects/Language</th>
<th>Possible Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>15 ppb</td>
<td>5</td>
<td>0.001</td>
<td>0 - 30</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Copper</td>
<td>1.3 ppm</td>
<td>0.03</td>
<td>1</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>

Radionuclides

<table>
<thead>
<tr>
<th>Unregulated</th>
<th>MCLG</th>
<th>MCL</th>
<th>Highest % positive in a month</th>
<th>Range of Detection</th>
<th>Violation</th>
<th>Major Source in Drinking Water</th>
<th>Health Effects/Language</th>
<th>Possible Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radon</td>
<td>8</td>
<td>0</td>
<td>0% - 35%</td>
<td>0 - 50%</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>

Additional Information

- **Wells located in Centerville:** Wells 5 + 9 Lumbert Mill Wells 7, 8, 11 Craigville
- **Wells located in Osterville:** Wells 12 + 2A McShane Wells 3 + 4 Ancil Wells 10 Davis
- **Wells located in Marstons Mills:** Wells 12 + 13 Murray Wells 14, 15, 17, 18, 20, 21, 22 Hayden Wells 16 + 19 Harrison

DEFINITIONS

Unregulated contaminants: “Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assess EPA’s determination of occurrence in drinking water and whether future regulation is warranted.” UCMR data summary at: water.epa.gov

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible by using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or anticipated risk to human health. MCLGs do not allow for margin of safety.

Department Updates

- **Please Help! Program your automatic irrigation systems – Odd house # – Monday & Wednesday Even house # – Tuesday & Thursday**
- **Necessary system improvements continue on the streets scheduled for repaving by the town**
- **Please attend the upcoming Annual District Meeting in May 2020**
- **All wells were sampled for PFAS with results of no detects**
- **Reduce Lead Exposure – After water has been stagnant in plumbing for more than 4-6 hours run cold tap water until you feel the temperature of water getting colder, then use.**

WHERE DOES MY WATER COME FROM?

The C-O-MI Water Department serves a year round population of over 35,000 consumers from our groundwater wells. We currently pump from 14 sites as shown below. As a source of additional water supply, water interconnections exist between COMM Water, Cotuit, Sandwich, Mashpee, Barnstable Fire District and the Hyannis Water System. No water was utilized from those sources in 2019.

Wells

- **Wells located in Centerville:** Wells 5 + 9 Lumbert Mill Wells 7, 8, 11 Craigville
- **Wells located in Osterville:** Wells 12 + 2A McShane Wells 3 + 4 Ancil Wells 10 Davis
- **Wells located in Marstons Mills:** Wells 12 + 13 Murray Wells 14, 15, 17, 18, 20, 21, 22 Hayden Wells 16 + 19 Harrison

Department Updates

- **Maximum Contaminant Level Goal or MCLG:** The level of a contaminant in drinking water below which there is no known or anticipated risk to human health. MCLGs do not allow for margin of safety.
- **MCL:** The highest level of a contaminant that is allowed in drinking water.
- **MCLG:** The level of a contaminant in drinking water below which there is no known or anticipated risk to human health. MCLGs do not allow for margin of safety.
- **ppb:** Parts per billion; one part in one billion.
- **ppm:** Parts per million; one part in one million.
- **mg/L:** Milligrams per liter.
- **ug/L:** Micrograms per liter.